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Abstract. Eulerian time-domain filtering sgems.to be appropriate for LES .
of flows whose large coherent structures convect approximately at a com-
mon characteristic velocity; e.g., mixing la.ye;s jets, and wakes. For these

ﬂows, we develop an approach to LES ba.seii on an exphcxt second-order

rian context. The approach is validated “th,r_gugh‘a priori and a posteriori
analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

1. Introduction

Historically, large-eddy simulation (LES) has relied upon spatial rather
than time-domain filters. Conceptually, however, filtering in time would
seem to enjoy certain advantages. First, the DNS-LES-RANS spectrum of
numerical approaches would be self-consistent if time-domain filtering were
exploited for LES as it is for RANS. Second, as observed by Frisch (1995)

“Most experimental data on fully developed turbulence are obtained in the ..

time domain and then recast into the space domain via the Taylor hypoth-
esis.” If time-domain analysis is natural fo¢ é¥periments, one wonders why
spatial re-interpretation is necessary or desirable. Third, differentiation-
operator/filter-operator commutation érror is-problematic for spatial filter-
ing on finite domains (Blaisdell, 1997, and Vasilyev et al., 1998). Fourth,
according to Moin and Jimenez (1993): “In LES, it is highly desirable for
the filter width to be significantly larger than the computational mesh to
separate the numerical and modeling errors. Practical considerations, how-
ever, usually require the filter width and mesh to be of the same order. In
this case, there does not appear to be a mécessity for higher than second
order numerical methods for LES.” In contrait, for the present temporally



is, lim;——oo G(¢,A) = 0), then partial differentiation a.nd"‘“ﬁf%éi"iﬁg com-
mute. As an example of a kernel that satisfies these constraints, consider
G(t,A) = H(t + A)/A, where H is the Heaviside function, and whereby
o(t) = f,_ a ¢(7)dr. Because bounded support is the norm for time-domain

filters, but not for spatial filters (Blaisdell, 1997), time-domain filteting = ** :

enjoys a natural advantage with respect’ to commutation error.

2.2. DISCRETE CAUSAL FILTERS

The discrete analog of Eq. 1 is ¢; = 372 pj¢i—;j, where ¢; = ¢(iAt, x) and
At is a (fixed) time increment. In general, the coefficients p; depend on
the quadrature rule used to approximate the integral of Eq. 1, the specific
kernel G, and the width A. Following Press et al. (1986), a more versatile '
digital filter—of recursive type—is given by
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whereby ¢ is a linear combination of previous unﬁltered and filtered valuw

From Press et al. (1986), the frequency respbme of recursive filters of the

form of Eq. 3 is .
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where . = /-1, Q = w*At* is the dimensionless frequency, and f* and w*

2r f* are the dxmensxona.l physical and ‘circular frequencies, respectlvely
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(Throughout the paper, we denote dimensional quantities by asterisks.): = "=

A class of recursive filters well-suited to"LES is the “Butterworth” class.
Low-pass digital Butterworth filters have the trait that py vanishes in Eq. 3,
which renders them fully explicit in time. The design of Butterworth filters
of various order properties is discussed in Strum and Kirk (1988), to which
the reader is referred. As our prototype, we adopt a second-order Butter-
worth filter, whose frequency response is shown in Fig. 1. The prototype,
with a nominal cutoff frequency of €2, & 1, Is rendered tunable by the in- -
troduction of a cutoff parameter, R, = ﬁ /S¥. = At/A, defined as the ratio
of the actual cutoff to that of the prototype, The action of the filter on a
harmonically rich signal is shown in Fig. 2for selected values of R..

Time-domain filters suffer some disadvantages relative to spatial filters.
First, they require storage of past informatiofi; the higher the order, the
more storage. In particular, our second-order filter requires four fields of
storage for each field filtered. However, relative to DNS, the net storage
savings of temporally filtered LES remain& substantxal Moreover, time-
domain filtering, which is one-dimensional, results in less computational
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where D = 3—‘ is the resolved-scale dilatation, 5;; = 2(&; = $D8ij), &i;

is the Kronecker delta, é; = 3 [3—* + 3—1-] is the resolved-scale strain- -

rate tensor, and ® is the dissipation function. For brevity, the physical
viscosity and thermal conductivity are denoted, respectively, as u, = fi/Re °
and x, = i/(M?RePr), where Re, Pr, and M are the Reynolds, Prandtl,

and Mach numbers, respectively. Similarly, the eddy viscosity and the eddy o
thermal conductivity are given, respectively, by. pr =G A2pMY2 and kp =

pT/('yMzPrT), where ! is a length scale, Prr is the turbulent Prandtl
number, v is the ratio of specific heats, and IT = S.‘.,S.J

Of mixed type, the SEZHu model incorporates both scale-sxmllarxtyﬁj:: R

and eddy-viscosity terms, which are underlined on the left and right sides
of the equations above, respectively. In the momentum equation, for exam-
ple, the underlined terms together model 7i; = P(iili; — u;u;), the exact

residual-stress tensor. The CNSE are recovered whenever the underlined ,

terms are turned off, which renders the equations valid for either DNS or
LES. For LES, the SGS model requires values for three constants. Following
Erlebacher et al. (1992), we use Prp = 0.5, C, = 0.012, and | = 2Az.

For the axisymmetric jet-flow application, we exploit a cylindrical co-. ,
ordinate system, for which z (u;) and z (u;) are the axial and radial co-

ordinates (velocities), respectively. Because of axisymmetry, the azimuthal .

coordinate (@) does not come into play.

4. Galilean Invariance

Speziale (1987) raises issues regarding Galilean ;inva_ria.nce and Eulerian h

time-domain filters. Ultimately, one can circumvent the issue by imple-

menting temporal filtering in a Lagrangian frame of reference, as has been .

proposed by Meneveau et al. (1996). However, Lagrangian time-filtered ap-

proaches suffer at least one drawback, namely the introduction of additional , . |

closure equations, which renders SGS models potentially as computation-

ally cumbersome as Reynolds-stress models, ‘Thus, Eulerian time-domain ..

filtering would be preferable whenever it is appro?gate, which is the subject __
of this section. R :

4.1. DOPPLER EFFECT
Speziale (1985) shows that the spatially filtered part of a Galilean-invariant

function is itself Galilean-invariant. Subsequently, (Speziale, 1987), he im- .

plies that the same is not true of time-domain ﬁlte:s .which we have verified.
In our words, although the governing equations themselves are Galilean in-
variant for time-domain filters, the individual terms of those equations are
not. In essence, Eulerian temporally filtered quantities experience a Doppler




jet temperature T} ='600F (on which Mach number is basied}; -ambient
temperature T, = 70F nominal jet radius R;‘ =0.5 in., ambient pressure’ '’
p; = 216 psf., a.nd Re = 10153 (based on the jet' condmons and-the jet ra-
dius). The jet is assumed to be axisymmetric and fully expanded, in which
case, in the absence of disturbances, the pressure is constant both radially
and axially.

In the Results section to follow, lengths have been normalized by R" o
and the velocltles, temperature, and density, have been normalized by UJ ' -
T;, and pj, respectively.

6. Numerical Methodology

We view spatial DNS and LES as three-step processes. First, an unper-
turbed time-independent base state is obtained by boundary-layer tech-
niques (Pruett, 1996). Second, the base state is subjected to temporally

periodic perturbations; here, these are imposed through the streamwise ve- - . .
locity at the computational inflow boundaty, a8 per Mankbadi et al., (1994). & . .-
Numerical experimentation reveals most rapid:development of the jet fora -
Strouhal number (St = f;R}/U7) of 0.5, where f} is the fundamental forc-: .. .
ing frequency. An out-of-phase subharmomc is a.lso included to enhance the i .- ;

pairing of adjacent vortices. The forcing amphtrude is small-half a percent

of U} for the fundamental-and the forcing ig. ig ramped up slowly to min- . .. :'

1mlze temporal transients. Third, the spatial evolution of the propagating.. .
disturbances is computed by numerical selut:on of the unfiltered (DNS) or
filtered (LES) CNSE, as discussed below. . .. .

For both DNS and LES, we adapt the high-ordcr numerical scheme of
Pruett et al. (1995), to which the reader is réferred for details. Briefly, this
algorithm exploits fully explicit time adveptement, high-order compact-
difference methods (Lele, 1992) for aperiodic spatial dimensions, and spec-
tral collocation methods for periodic spatial dimensions. Specifically, for :
the present axisymmetric-jet application, we:use fourth- and sixth-order
compact-difference schemes in the axial'and radial-dimensions, respectively. -
(The azimuthal dimension does not:comd inte: play because of the axisym-
metry assumption.) The original ‘method of Pruett et al. (1995) used a
variable step for time advancement in the vohtext of a third-order Runge-
Kutta (RK3) scheme. However, the present GES application, which involves
temporal filtering, requires a constant time step. Consequently, the original
RK temporal integration has been repiwad*by a ﬁxed-length third-order -~ =
Adams-Bashforth (AB3) technique.- ' = ,

Regarding boundary conditions, for both DNS and LES, symmetry con-
ditions are imposed along the jet axis (z ='0). At the inflow boundary, we

specify v, w, T, and the incoming Riemann invariants. At the far-field -
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R, = 0.015625 as cutoffs for the grid and test filters, respettivily; hence,
r = 2. (The grid-filter cutoff value is consistent with R, = 0.125 for the .
LES calculation below, of coarser time resolution.) When adjusted for the
phase lag of the test filter, correlations of 0.90 are obtained.

Following Liu et al. (1994), we also present results for r = 1. Whereas

r = 1 is disallowed by conventional dynamic SGS models, Taylor-series

analysis (Pruett, 1997) suggests that r = 1 is optimal for second-order filters
in that the leading-order error term vanishes in the approximation of 7;; by -
Lij. In this case, the: correlation coefficients exceed 0.998 when corrected
for the phase lag of the test filter. Moreover, coefficients on the order of 0.7
are obtained when the resolved and residual stresses are correlated at the
same instant in time, without correction.

Present a priori tests suggests that ltrong correlations exxst between
the 7;; and L;j, as observed also for spatial filters. We note that for r =1,
the stress-similarity model of Liu et al. (1994) is equivalent to the .SEZHu
model of Section 3 with its dissipative term turned off. It is well known,
however, the similarity models alone are insufficiently dissipative for prac-
tical applications to LES. Hence, we consider an a posteriori test of the full
SEZHu model.

7.2. LES

The SEZHu SGS model was implemented with no changes other than the .
incorporation of time-domain filtering in lieu of spatial filtering for the -
similarity term, which we evaluate in real time, Some numerical experi-
mentation was necessary to find an appropriate level of dissipation. If the
SGS model is insufficiently dissipative, the computation blows up. On the

other hand, if the model is excessively dissipative, the instabilities that re- - . o

sult in vortex shedding and pairing are suppressed. Because most model
parameters were set for consistency with Erlebacher et al. (1992), dissi-
pation was controlled by experimenting with grid resolution and with the
test-filter cutoff R.. Figure 5 presents instantaneous contours of constant
density at ¢, = 18 obtained from an LES computation of 432 x 192 spatial
resolution, R, = 0.125, and r = 2. Because fully explicit numerical schemes
are typically over-resolved in time, it is natural that A >> At (R, << 1).
Whereas the DNS calculation required 40 GPU hours, the coarser LES cal- -
culation required but two hours. Relative to.the DNS results of Fig. 3, the
shear-layer roll-up and pairing events of the LES computation are retarded
but not prevented. Consequently, we believe that moderately resolved LES
could serve as a computational platform for investigations of jet noise, and
that a SGS model built on Eulerian time-domain filtering is well-suited for
this task. To this end, we extract the compressible dilatation from the LES -
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